Data loading¶
chironpy has built-in support for loading these activity file formats:
...and loading data from these services:
Helper functions:
read_file(), that automatically determines the file format.read_dir(), that iterates over all the files in a directory.
FIT files¶
The read_fit() function accepts strings, pathlib objects and other file-like objects and returns a pandas.DataFrame with column names matching chironpy nomenclature.
Usage:
import chironpy
data = chironpy.read_fit("path/to/file.fit")
Example:
import chironpy
example_fit = chironpy.examples(path="4078723797.fit")
data = chironpy.read_fit(example_fit.path)
HRV data¶
The read_fit() function accepts an hrv=True parameter.
When set to True (default is False) a dictionairy is returned, with the dataframe in the key "data" and a pandas.Series with RR intervals in the "hrv" key.
import chironpy
example_fit = chironpy.examples(path="4078723797.fit")
data = chironpy.read_fit(example_fit.path, hrv=True)
data["hrv"]
-> pd.Series
Pool length data¶
When reading FIT files from pool swims, you can use the pool_lengths=True parameter.
When set to True (default is False) a dictionairy is returned, with the dataframe in the key "data" and a pandas.DataFrame with pool length records in the "pool_lengths" key.
import chironpy
example_fit = chironpy.examples(path="4078723797.fit")
data = chironpy.read_fit(example_fit.path, pool_lengths=True)
data["pool_lengths"]
-> pd.DataFrame
Summaries¶
The read_fit() function accepts a summaries=True parameter.
When set to True (default is False) a dictionairy is returned, with the dataframe in the "data" key, and in the keys "activity", "session" and "laps" relevant summaries:
- "activity": a dictionairy with a summary of the entire activity.
- "sessions": a pandas.DataFrames with summaries of each session. Only for multi session FIT files this is different from the activity summary.
- "sessions": a pandas.DataFrames with summaries of each lap.
import chironpy
example_fit = chironpy.examples(path="4078723797.fit")
data = chironpy.read_fit(example_fit.path, summaries=True)
data["sessions"]
-> pd.DataFrame
Metadata¶
The read_fit() function accepts a metadata=True parameter.
When set to True (default is False) a dictionairy is returned, with the dataframe in the "data" key, and in the key "devices" a list of all the devices found in the FIT file.
Additionaly, the "athlete" key contains a model of the athlete with all available information.
import chironpy
example_fit = chironpy.examples(path="4078723797.fit")
data = chironpy.read_fit(example_fit.path, metadata=True)
data["devices"]
-> list
data["athlete"]
-> Athlete(name=None, gender=<Gender.MALE: 'MALE'>, age=34, weight=79.0, max_heartrate=189, unit_system=<UnitSystem.METRIC: 'METRIC'>, threshold=ThresholdSetting(sport='cycling', sub_sport='generic', power=200, speed=None, heartrate=182), activity_class=80)
Raw FIT messages¶
The read_fit() function accepts a raw_messages=True parameter.
When set to True (default is False) a dictionairy is returned, with the dataframe in the "data" key, and in the key "raw_messages" a list of dictionairies that contains all the raw FIT messages.
import chironpy
example_fit = chironpy.examples(path="4078723797.fit")
data = chironpy.read_fit(example_fit.path, raw_messages=True)
data["raw_messages"]
-> list
GPX files¶
The read_gpx() function accepts strings, pathlib objects and other file-like objects and returns a pandas.DataFrame with column names matching chironpy nomenclature.
Usage:
import chironpy
data = chironpy.read_gpx("path/to/file.gpx")
Example:
import chironpy
example_gpx = chironpy.examples(path="4078723797_strava.gpx")
data = chironpy.read_gpx(example_gpx.path)
TCX files¶
The read_tcx() function accepts strings, pathlib objects and other file-like objects and returns a pandas.DataFrame with column names matching chironpy nomenclature.
Usage:
import chiron
data = chironpy.read_gpx("path/to/file.gpx")
Example:
import chironpy
example_tcx = chironpy.examples(path="3173437224.tcx")
data = chironpy.read_tcx(example_tcx.path)
Metadata¶
The read_tcx() function accepts a metadata=True parameter.
When set to True (default is False) a dictionairy is returned, with the dataframe in the "data" key, and in the key "device" a Device object that has the attributes name, product_id, serial_number, sensors and metadata:
import chironpy
data = chironpy.read_tcx("path_to.tcx", metadata=True)
data["device"]
-> Device(name='Garmin Edge 1000', product_id='1836', serial_number='3907354759', metadata={'creator_xml': ...}, sensors=[])
Strava¶
The chironpy.read_strava() function can be used to pull data from Strava.
chiron assumes you already have an API access token. Read more about that here.
If you are looking for a Python library that helps you with Strava API authentication, take a look at stravalib or stravaio.
read_strava() returns a pandas.DataFrame with column names matching chironpy nomenclature.
Usage:
import chironpy
data = chironpy.read_strava(activity_id=1234567890, access_token="some access token")
Helper functions¶
read_file() works exactly as the other read_*() functions but tries to automatically determine the file format.
It raises a ValueError when the file format cannot be determined or is not supported.
Please note that the read_file() does not support passing file-like objects.
Example:
import chironpy
example_tcx = chironpy.examples(path="3173437224.tcx")
data = chironpy.read_file(example_tcx.path)
read_dir() allows you to read all the files in a directory and iterate over them.
It uses read_file() under the hood and returns a generator.
Please note that read_dir() expects all the files in the directory to be of a supported file format.
Example:
from pathlib import Path
import chironpy
directory = Path("path/to/some/dir/")
for activity in chironpy.read_dir(directory):
# Do things with the activities
Resampling¶
All read_*() functions accept a resample and interpolate argument (both False by default) that can trigger a resampling to 1Hz and subsequent linear interpolation of the data for files that are not sampled (consistently) at 1Hz, as some Garmin devices with "smart recording mode" do.
import chironpy
example_tcx = chironpy.examples(path="3173437224.tcx")
data = chironpy.read_tcx(example_tcx.path, resample=True, interpolate=True)