Skip to content

Data loading

chironpy has built-in support for loading these activity file formats:

...and loading data from these services:

Helper functions:

  • read_file(), that automatically determines the file format.
  • read_dir(), that iterates over all the files in a directory.

FIT files

The read_fit() function accepts strings, pathlib objects and other file-like objects and returns a pandas.DataFrame with column names matching chironpy nomenclature.

Usage:

import chironpy


data = chironpy.read_fit("path/to/file.fit")

Example:

import chironpy


example_fit = chironpy.examples(path="4078723797.fit")

data = chironpy.read_fit(example_fit.path)

HRV data

The read_fit() function accepts an hrv=True parameter. When set to True (default is False) a dictionairy is returned, with the dataframe in the key "data" and a pandas.Series with RR intervals in the "hrv" key.

import chironpy


example_fit = chironpy.examples(path="4078723797.fit")

data = chironpy.read_fit(example_fit.path, hrv=True)

data["hrv"]
-> pd.Series

Pool length data

When reading FIT files from pool swims, you can use the pool_lengths=True parameter. When set to True (default is False) a dictionairy is returned, with the dataframe in the key "data" and a pandas.DataFrame with pool length records in the "pool_lengths" key.

import chironpy


example_fit = chironpy.examples(path="4078723797.fit")

data = chironpy.read_fit(example_fit.path, pool_lengths=True)

data["pool_lengths"]
-> pd.DataFrame

Summaries

The read_fit() function accepts a summaries=True parameter. When set to True (default is False) a dictionairy is returned, with the dataframe in the "data" key, and in the keys "activity", "session" and "laps" relevant summaries:

  • "activity": a dictionairy with a summary of the entire activity.
  • "sessions": a pandas.DataFrames with summaries of each session. Only for multi session FIT files this is different from the activity summary.
  • "sessions": a pandas.DataFrames with summaries of each lap.
import chironpy


example_fit = chironpy.examples(path="4078723797.fit")

data = chironpy.read_fit(example_fit.path, summaries=True)

data["sessions"]
-> pd.DataFrame

Metadata

The read_fit() function accepts a metadata=True parameter. When set to True (default is False) a dictionairy is returned, with the dataframe in the "data" key, and in the key "devices" a list of all the devices found in the FIT file. Additionaly, the "athlete" key contains a model of the athlete with all available information.

import chironpy


example_fit = chironpy.examples(path="4078723797.fit")

data = chironpy.read_fit(example_fit.path, metadata=True)

data["devices"]
-> list

data["athlete"]
-> Athlete(name=None, gender=<Gender.MALE: 'MALE'>, age=34, weight=79.0, max_heartrate=189, unit_system=<UnitSystem.METRIC: 'METRIC'>, threshold=ThresholdSetting(sport='cycling', sub_sport='generic', power=200, speed=None, heartrate=182), activity_class=80)

Raw FIT messages

The read_fit() function accepts a raw_messages=True parameter. When set to True (default is False) a dictionairy is returned, with the dataframe in the "data" key, and in the key "raw_messages" a list of dictionairies that contains all the raw FIT messages.

import chironpy


example_fit = chironpy.examples(path="4078723797.fit")

data = chironpy.read_fit(example_fit.path, raw_messages=True)

data["raw_messages"]
-> list

GPX files

The read_gpx() function accepts strings, pathlib objects and other file-like objects and returns a pandas.DataFrame with column names matching chironpy nomenclature.

Usage:

import chironpy


data = chironpy.read_gpx("path/to/file.gpx")

Example:

import chironpy


example_gpx = chironpy.examples(path="4078723797_strava.gpx")

data = chironpy.read_gpx(example_gpx.path)

TCX files

The read_tcx() function accepts strings, pathlib objects and other file-like objects and returns a pandas.DataFrame with column names matching chironpy nomenclature.

Usage:

import chiron


data = chironpy.read_gpx("path/to/file.gpx")

Example:

import chironpy


example_tcx = chironpy.examples(path="3173437224.tcx")

data = chironpy.read_tcx(example_tcx.path)

Metadata

The read_tcx() function accepts a metadata=True parameter. When set to True (default is False) a dictionairy is returned, with the dataframe in the "data" key, and in the key "device" a Device object that has the attributes name, product_id, serial_number, sensors and metadata:

import chironpy


data = chironpy.read_tcx("path_to.tcx", metadata=True)

data["device"]
-> Device(name='Garmin Edge 1000', product_id='1836', serial_number='3907354759', metadata={'creator_xml': ...}, sensors=[])

Strava

The chironpy.read_strava() function can be used to pull data from Strava. chiron assumes you already have an API access token. Read more about that here. If you are looking for a Python library that helps you with Strava API authentication, take a look at stravalib or stravaio. read_strava() returns a pandas.DataFrame with column names matching chironpy nomenclature.

Usage:

import chironpy

data = chironpy.read_strava(activity_id=1234567890, access_token="some access token")

Helper functions

read_file() works exactly as the other read_*() functions but tries to automatically determine the file format. It raises a ValueError when the file format cannot be determined or is not supported. Please note that the read_file() does not support passing file-like objects.

Example:

import chironpy


example_tcx = chironpy.examples(path="3173437224.tcx")

data = chironpy.read_file(example_tcx.path)

read_dir() allows you to read all the files in a directory and iterate over them. It uses read_file() under the hood and returns a generator. Please note that read_dir() expects all the files in the directory to be of a supported file format.

Example:

from pathlib import Path

import chironpy


directory = Path("path/to/some/dir/")

for activity in chironpy.read_dir(directory):
    # Do things with the activities

Resampling

All read_*() functions accept a resample and interpolate argument (both False by default) that can trigger a resampling to 1Hz and subsequent linear interpolation of the data for files that are not sampled (consistently) at 1Hz, as some Garmin devices with "smart recording mode" do.

import chironpy


example_tcx = chironpy.examples(path="3173437224.tcx")

data = chironpy.read_tcx(example_tcx.path, resample=True, interpolate=True)